

Component-Based Design May Degrade System Usability:
Consequences of Software Reuse

Morten Hertzum
Centre for Human-Machine Interaction

Risø National Laboratory, Denmark
morten.hertzum@risoe.dk

Abstract

Component-based design is gaining attention as a
potentially feasible approach to software reuse. An
important aspect of this reuse potential lies in the
possibility of turning existing applications into
functionally rich, reusable components and, thereby,
preserving the investment in legacy systems. Based on
fieldwork in a software development company where this
practice has been adopted, this study analyzes how the
consequences of component-based design reach beyond
the development process and well into system use. It is
argued that functionally rich components add new
complexities to the mapping between the system and the
real world, and may lead to degraded system usability.
In the field study, the potential usability issues involved
in relying on functionally rich components include a
fragmented system image, task gaps, conceptual
mismatches, rekeying, scalability problems, and added
education and training. Systems development companies
should be wary not to uncritically adopt techniques that
support reusability at the expense of usability.

Keywords : Component-based design, reuse, usability.

1. Introduction

Software reuse has long been expected to result in
substantial productivity and quality gains but to date this

expectation has been largely unmet [2, 3, 12]. On the
surface, software reuse seems the most obvious of
software practices but the few success stories and many
reuse failures evidence that it is truly difficult to put
software reuse into actual practice. When systems
developers create software, they make extensive use of
knowledge they already possess. This type of reuse of
one’s own experiences, possibly in the form of code
fragments, is the essence of professionals’ ability to gain
proficiency through experience [4]. The difficulties arise
when reuse is attempted in cooperative settings where
multiple systems developers are involved in making,
maintaining, using, and possibly reusing design ideas
and code fragments over extended periods of time.

Table 1 lists some of the major reasons for reuse
failures, which have been identified in the literature. It is
apparent that these reasons concern the context in which
the software is developed. This study investigates the
consequences of software reuse on the usability of a
system where reuse is approached through component-
based design. In the studied systems development
company, the recent adoption of component-based
design is considered necessary to the efficient
development of high-quality software. However, a field
study of one development project within the company
reveals a recurring discussion among the project
participants regarding the viability of building the
system from functionally rich, reusable components as
prescribed in the project plan. While the development-
side benefits of component-based design are undisputed,

Table 1. Reasons for reuse failures [2, 10, 12, 13]

1. Lack of support and long-term commitment from management
2. Corporate culture and reward system discourage reuse
3. Belief that reuse is counter-creative
4. Lack of understanding about why to practice reuse (not-invented-here syndrome)
5. No experience in practicing reuse and nothing to reuse, i.e. no software reuse library
6. A belief that the current application is unique and, thus, cannot benefit from reuse
7. No tools and methodology support
8. The documentation of the software is either non-existent or insufficient
9. Software that can perform the required task is available, but it is so general that it is too inefficient for the task
10. The software performs a task that resembles the required task, but the cost of changing the software to perform

the required task is greater than the cost of writing new software

In C. Paris, N. Ozkan, S. Howard, and S. Lu (eds.), OZCHI 2000 Conference Proceedings: Interfacing Reality
in the New Millennium (Sydney, Australia, December 4-8, 2000), pp. 88-94. CSIRO, North Ryde, Australia.

Preprint version

several project participants are severely concerned that
building the system from such components will make it
prohibitively difficult to use. This study lays out and
analyzes these concerns to improve our understanding of
how the implications of software reuse reach beyond the
software development process and well into systems use.
It should be noted that the system is still under
construction and, thus, no data on real use are available.

The next section briefly introduces component-based
design. Section 3 accounts for the method used in
performing the field study, and Section 4 introduces the
project that has been studied. Sections 5 through 7
analyze how component-based design may degrade
system usability in ways that are only gradually
recognized by the studied systems developers. Finally,
Section 8 concludes the paper by underlining that the
reuse payoff that development organizations expect of
component-based design may come at a considerable
price.

2. Component-based design (CBD)

Software components are gaining a great deal of
attention within systems development as a relaxed
approach to object-oriented design and development.
Components, as is true with objects, use encapsulation to
separate component specification and invocation from
component implementation. Thus, components provide
an external interface to their functionality and hide all
details about the internal constructs that go into
providing this functionality. This means that: (1) All
communication with a component is through its
interface, which is the only thing you need to know
about to use the component. (2) As long as the interface
remains unchanged, the implementation of a component
can be changed without knowledge of where and how
the component is used. Contrary to objects, components
tend not to embrace the more complex characteristics of
object-oriented design and development, i.e.
polymorphism and inheritance. This means that there is
no component hierarchy where changes to one
component produce changes in all the components
derived from it. Seemingly, an increasing number of
companies find that component-based design may
potentially be a simpler, more controllable, and more
feasible process [8].

Encapsulation is one important property of
components; another is the functionality the components
provide. Components are, generally, defined at a level
where they can readily be related to specific business
processes and are, hence, typically richer in functionality
than objects. Sprott [14] finds that adopters of
component-based design often concentrate on
functionality and place less emphasis on the benefits of
encapsulation. Specifically, component-based design
seems to progress toward [8]:

• The implementation of more sophisticated
business functions.

• Suites of configurable components that can be
used as building blocks in developing domain-
specific applications.

• Server-side component ‘wrappers’ for legacy
applications and data.

• Turning entire applications into components to
achieve modularity and easy interoperability with
other applications.

As can be seen from this list an important part of the
reuse potential of component-based design lies in the
possibility of turning existing applications into
components, which can then be reused for additional
purposes. This is attractive from a resource perspective
because it preserves the investment in the existing
applications and provides a way to gradually migrate
legacy systems to a client/server or Web environment.
For users, the most visible advantage of component-
based design is increased consistency in that all
occurrences of a specific task are supported with the
same component; thus, the user is relieved from random
variations in interface or functionality.

3. Method
The data collected for this study cover the first eleven

months of a two-year system development project. I
have followed the project by (1) participating in the two-
day start-up seminar, (2) being present at the fortnightly
status meetings and some additional meetings, (3)
conducting interviews with eleven of the core project
participants, and (4) inspecting various project
documents. The meetings and interviews have been
recorded on tape and transcribed. This study is based on
an analysis of the 22 meetings I have observed,
supplemented with data from the interviews.

The main purpose of the meetings has been to provide
a forum for sharing information about the status of the
project, maintaining awareness of the entire project,
coordinating activities, discussing problems and
progress, making decisions, and reviewing major project
documents. During the meetings, I have been seated at
the meeting table with the other people present. From
their point of view, I have been invisible in that I was not
to be spoken to and have myself remained silent. During
the breaks, I have talked informally with people.

The interviews provided an opportunity to talk about
people’s individual experiences and concerns, and to dig
deeper into issues and discussions that were merely
hinted at during the meetings. The interviews, which
lasted 1-1½ hours each, concerned the project
participants’ roles and responsibilities in the project as
well as their views on what was critical to successful
completion of the project.

4. The CSA Project
The company where the field study took place is a

large software house, which has developed and marketed
a range of systems for use in local government

institutions. The studied project concerns a system to
support local government authorities in the handling of
cases concerning child support and alimony (CSA). The
CSA project was initiated in 1999 and will, according to
the project plan, last two years. The first eleven months
of the project, the period analyzed in this study,
concerned the requirements specification, the business
modeling, and part of the application and component
design. During this period, the project was staffed with a
project manager, eleven designers/developers, two
service consultants, a methods & tools consultant, a
usability specialist, and a secretary. The project manager
and six of the designers/developers worked full time on
the CSA project, the remaining ten persons were
assigned to the CSA project on a part-time basis. When
referred to as a group, the members of the CSA project
will be termed CSA engineers, irrespective of their
different educational backgrounds.

The CSA engineers are to completely redevelop the
existing CSA system, which several of them have been
heavily involved in developing and maintaining over the
last 18 years. Whereas the existing CSA system contains
substantial amounts of code that duplicate functionality
from other systems made by the company, the new CSA
system will distribute this functionality onto components
that are to be developed by other project groups in the
company. The adoption of component-based design
means that the CSA engineers have to cooperate closely
with a number of people outside the project to negotiate,
settle, and follow up on component definitions and how
the development of the components progresses [7].

Naturally, the CSA engineers also have to interact with a
number of other stakeholders in the development
process, including user representatives.

5. CBD from a user-centered point of view
The existing CSA system consists of three modules

(Figure 1a). While the data exchange module is specific
to the CSA system, many of the systems developed by
the company have debit and credit modules. From a
bird’s eye perspective the functionality of these modules
is similar across systems but in each case the modules
have been developed based on an analysis of the specific
circumstances that characterize this particular use
situation. In the case of the CSA system, the debit
module provides a carefully tailored CSA-view into the
company’s standalone debit system. The rationale for
this is twofold: (1) The standalone debit system lacks
some facilities needed to handle CSA cases. (2) CSA
users are working with either the credit side of the
system or the debit side. The debit module of the CSA
system gives the credit-side users all the debit
information they need and, thus, relieves them from the
complexities of the standalone debit system. The debit-
side users deal with the debit aspects of many kinds of
cases besides CSA cases, and therefore need a system
that is not tailored to CSA needs only.

The new CSA system will to a large extent be
composed of components developed outside the CSA
project (Figure 1b). Most of these components are
business components brought about by defining

Debit Data Exchange

Debit
Credit

CSA

(a)

CSA Kernel

Basic Citizen
Data

Debit Credit

Business File
Overview

…

Notes and
Annotations

Accounting

Child
Maintenance

Security Workflow
Management

CSA

(b)

Figure 1. Architecture of the CSA system. (a) The existing CSA system is
interfaced to one component developed outside the project. (b) The new CSA
system will consist of a kernel and a dozen externally developed components.

interfaces that turn standalone, legacy systems into
components. By and large, this reduces the amount of
code that has to be produced in the CSA project to the
CSA kernel. This reduction is achieved at the cost of a
substantial amount of work coordinating and following
up on the development of the components [see 5, 7].
However, the adoption of component-based design
probably means that the new CSA system will
encompass more special cases and support more aspects
of the users’ work than if the CSA engineers were
developing everything themselves. The users –
especially the credit-side users who are the primary users
of the CSA system – may however experience that the
system has become less transparent. Specifically, the
new system is not contained within a closed set of
screens and functions but will extend into components
that (1) are themselves entire systems, (2) do not
necessarily comply completely with CSA conventions,
and (3) provide other facilities besides those relevant to
the handling of CSA cases. This suggests that it will be
very difficult to provide the user with a strong and
consistent system image [11]. The user is, instead, likely
to experience difficulties in forming a coherent
conception of how CSA cases are modeled in the system.

The decision to use components to the greatest extent
possible was stated in the founding project documents.
Whereas the designers/developers initially tended to
consider it a purely technical decision, the service
consultants were concerned that the decision to develop
the CSA system from functionally rich components
would also have consequences for the users. As the
project progressed, the potential usability issues involved
in relying on functionally rich components were
gradually realized and brought up for discussion at
several meetings. These issues include:

• Task gap . When a lot of the system functionality
is provided by components developed with other
use situations in mind, the coupling between the
system and the users’ task suffers. It becomes
more difficult to see through the system and
maintain a focus on the actual CSA work.
Instead, it becomes more likely that the user will
have to spend time working out the real-world
meaning and consequences of various system
options and facilities.

• Conceptual mismatches. The same concept may
be used in several components but it may not
mean the exact same thing. For example, a
person’s income is calculated in different ways in
different situations, and some components have
codes – such as retirement codes – that are used
differently in different components. Often, it
takes considerable insight into two components
to tell whether a common code actually means
the same in both of them.

• Rekeying. As the components are rather self-
contained, the user will at times be required to
key in the same piece of information several

times – in different components. This is a trade-
off between the development effort required to
integrate the components and the manual
procedures the users must perform to bridge gaps
between the components.

• Scalability. The components were originally
developed for contexts with a certain load in
terms of cases, events etc. Reusing a component
in a context with a substantially lower or higher
load causes the design to be awkward or
inadequate, although the functionality may in
principle be right.

• Education and training. When tailor-made, local
modules are replaced with more versatile and
much bigger components, the user experiences
fewer restrictions but has to spend more time
learning how to use the system.

The above issues are tied to the use of functionally
rich components. In the CSA project the use of
functionally rich components is a result of the decision
to turn existing applications into reusable components.
While component-based design can certainly be
approached in other ways, components are typically at
the level of business processes, and the trend seems to be
toward increasingly complex components (see Section
2). Biggerstaff & Richter [2] hold that “as a component
grows in size, the payoff involved in reusing that
component increases more than linearly.” Further, opting
for small components will normally mean that many
more components are necessary and this in turn means
that it becomes a task in itself to get to know when an
appropriate component is available and which one to
choose. Thus, there is reason to believe that components
will often be functionally rich and, consequently, that the
task gap, conceptual mismatches etc. are usability issues
of potential relevance to much component-based design.

6. CBD and the users’ key competence
The users of the CSA system are subject specialists

characterized by putting to work their intellectual skill
learned in systematic education and through experience.
They are to a large extent paid to make sense of things
and pass judgements, and they do that largely by resort
to structures internal to themselves rather than by resort
to external rules or procedures. Though the handling of
CSA cases is prescribed in detail in written legislation,
there is a large gap between the terse texts and the
richness of real-world cases. To close this gap, the users
of the CSA system have to interpret the legislation with
respect to the concrete cases they are confronted with.
Over time, this leads to a practice that reflects the legal
norms laid out in the legislation but is not inherent in the
written legislation as such [9]. One of the service
consultants provided an illustrative example of the kinds
of cases users consult the call center about:

Service consultant: We have just had a case where
the county has decided that a person should be
billed although there is no document [a CSA case
is defined by a document that settles who will be
paying whom and how much; legally the document
is a contract]. There is just an agreement among the
parties. It has been discussed in the county twice,
and the county has decided that they [the local
authorities] shall send out a bill. There is no
document. There is an agreement among the parties
but that is not a document in any legal sense. They
will bill on the basis of it anyway. […] I’m saying
this to illustrate – it’s just a small selection of one
day’s calls – what it is they call and ask us about.
To illustrate that the rule-basedness you expect is
not what we experience.

It is essential to note that using the CSA system does

not simply consist in feeding it with input and then
accepting the output from the system as the correct
decision. Rather, the user first arrives at the correct
decision, and then figures out how the case should be
entered into the system to achieve this outcome1. The
users’ ability to perform their work well rests on how
good they are at building a coherent understanding of
their concrete cases. This understanding enables them to
make just decisions, which are subsequently
implemented through the use of the CSA system. In
complex cases the building of this understanding may
involve discussion with colleagues or service consultants
at the call center, but once the way to handle a case has
been settled the users rarely need further guidance to
actually go through the screens and input the data. Thus,
whereas the actual operation of the CSA system is a
minor issue, the user needs a detailed understanding of
how CSA cases are modeled in the system to be able to
achieve the desired outcome in simple as well as
complex cases.

In this regard, we can distinguish three broad sources
of complications in using a system to solve complex
tasks:

• Problems handling the complexity of the work
domain. The CSA system can take over most of
the calculations and bookkeeping but it cannot do
away with the essential difficulties involved in
CSA work. Rather, these essential difficulties are
what constitute CSA work, and the users are
prepared to be spending their time grabbling with
them.

• Problems operating the system. It is both possible
and commendable to choose sensible labels,
avoid random inconsistencies in the user
interface, and in other ways make the system
easy to operate. The operation of a system is,
however, only a minor part of using it, and ease-

1 Note that this has nothing to do with circumventing the rules;
it is entirely about competent use of tools.

of-operation cannot make up for the more
profound complications.

• Problems mapping between the real world and
the system. When systems get more complex and
still closer to the users’ work, a consistent and
transparent mapping between the real world and
the system becomes crucially important. To be
usable the CSA system must enable its users to
readily predict the real-world outcome of the
various system facilities vis -à-vis the users’
concrete cases.

The primacy of a consistent and transparent mapping
between the real world and the system is well supported
in the literature [e.g., 1, 6, 11] and means that the task
gap introduced by reusing functionally rich components
is a critical issue. Users need an intelligible system
image that is consistent with their work tasks but they
are, instead, likely to get a system image that is
composed of a set of related but not fully integrated
component images. This introduces additional
dimensions into an activity the users already experience
as difficult, and in a certain sense these additional
dimensions are foreign to the users’ work. Users expect
new systems to give them more time for their work or
make them more capable of accomplishing it, and they
are only prepared to spend a limited amount of their time
and attention on making sense of a computer system.
Consequently, systems development organizations
should be wary not to uncritically adopt techniques that
support reuse at the expense of more fragmented system
images.

7. Awareness of CBD’s effect on usability
In the service consultants’ opinion, the

designers/developers often display a somewhat shallow
and simplistic understanding of what the users need and
what cause them trouble. On the one hand, the
designers/developers are biased toward the system-
centered issues that form the bulk of their work:

Service consultant: But what you [a designer/
developer] don’t know – or do not think about –
that’s use. There is no doubt that you’re the one
person who knows most about how the existing
CSA system is composed.

On the other hand, the service consultants often find it

frustratingly difficult to communicate that the user-
centered issues are much more about bridging the gap
between the real world and the system than about
operating the system.

The service consultants find that the way the
designers/developers interact with the users is one reason
for their somewhat shallow understanding of user issues.
Whereas the service consultants are called by users who
are in the midst of their work and experience a problem
or an exceptional case, the designers/developers interact

with users through relatively brief encounters where the
users are taken out of their work context and interviewed
about a set of issues. These interviews supplement a
series of full-day meetings between a selected group of
about ten users and a group of CSA engineers, including
both designers/developers and the two service
consultants. The basic problem with the interviews is
that they end up focusing on mainstream cases at the
expense of a number of exceptions that should also be
covered by the system:

Service consultant: It is a problem, though, that
when you [the designers/developers] go out and
talk with them [the users] they primarily think of
all the ordinary things.

Designer/developer: Of course they do.

Service consultant: Often, they don’t think about
the ah-then-there-is-also and yeah-that’s-also-
possible cases.

When a designer/developer for example asks whether

a specific facility would be useful, the users often base
their reply on the mainstream cases, which are numerous
but relatively easy to handle. Sometimes the
designers/developers get positive feedback on facilities
that are too simplistic to handle the exceptions, which
may be few in numbers but take up a lot of time and
resources. In these cases it is up to the service
consultants to spot that further analysis is required.
These cases also illustrate that the interviews are likely
to give the designers/developers another view on what
constitute the principal usability concerns in the CSA
system than the one the service consultants get from
their work in the call center.

Generally, the two service consultants have been
more concerned with the consequences of adopting
component-based design than have the other CSA
engineers. The service consultants spend a great deal of
time arguing that the users primarily experience
problems with regard to handling the complexity of their
work domain and mapping between the real world and
the CSA system. The adopted approach to software reuse
is based on turning existing systems into functionally
rich components and this seems to add new complexities
to the mapping between the real world and the CSA
system. To the users this is a potentially severe
consequence of a type of component-based design that is
considered promising by development organizations.

8. Conclusion
Component-based design, a relaxed approach to

object-oriented design, is gaining attention as a
promising technique for organizing and accomplishing
software reuse. From a practical point of view, an
important part of this reuse potential lies in the
possibility of turning existing applications into reusable
components and, thereby, preserving the investment in

legacy systems. Component-based design is generally
considered a technique of interest to development
organizations as a way to save resources, which may
then be allocated to other activities, and provide more
comprehensive functionality, which would otherwise be
too costly to (re)develop. The consequences for users
have received comparatively little attention, except for
pointing out that component-based design entails
increased interface consistency.

Based on fieldwork in a software development
company where existing applications are turned into
functionally rich components, this study analyzes how
the consequences of component-based design reach
beyond the development process and well into system
use. The studied development project is to completely
redevelop a system, which is intended to assist its users
in performing a complex work task. In addition, the
system is to model this task at a very fine-grained level.
It should be noted that this study is based on data from
the development process; the studied system is still
under construction and thus no data on real use are
available. While no strong claims can be made as to the
generality of the findings, it is reasonable to assume that
they will also be applicable in other settings where
complex systems are assembled from functionally rich
components.

The usability of a system for a complex work domain
is critically dependent on a system image that is
intelligible and consistent with the users’ work tasks.
This study shows that when systems are assembled from
functionally rich components the users are, instead,
likely to get a system image that is composed of a set of
related but not fully integrated component images. The
components incorporate assumptions about the users’
tasks, and because the components have different origins
these assumptions differ across components. This adds to
the complexity of using the system because it is left to
the users to bridge the gaps between the components.
Consequently, the use of components makes it more
difficult to work out the real-world meaning and
consequences of the various system facilities. In the
studied project this potential degradation of system
usability was gradually realized and discussed in terms
of (1) gaps between the system and the user’s task, (2)
conceptual mismatches across components, (3) the need
to rekey information that had already been entered into
another component, (4) scalability problems when
components were used for other purposes than those
originally envisaged, and (5) the need for increased
education and training. It is anticipated that these issues
get increasingly severe as systems are developed to
handle increasingly fine details of the users’ work.

While development organizations may potentially
reap a major payoff from component-based design, the
users may experience a degradation of system usability.
This calls for reflection on how previous experience and
work products can most fruitfully be brought to bear on
new development projects.

9. Acknowledgements
This work has been supported by a grant from the

Danish National Research Foundation. I wish to thank
the members of the CSA project group who have put up
with my presence in spite of their busy schedule.

10. References
[1] Bannon, L.J. and Bødker, S. “Beyond the interface:

Encountering artifacts in use”, in Carroll, J.M. (ed.)
Designing Interaction: Psychology at the Human-
Computer Interface (pp. 227-253), Cambridge University
Press, Cambridge, 1991.

[2] Biggerstaff, T.J. and Richter, C. “Reusability framework,
assessment, and directions”, in Biggerstaff, T.J. and
Perlis, A.J. (eds.) Software Reusability: Concepts and
Models (pp. 1-17), ACM Press, New York, 1989.

[3] Brooks, F.P. “’No silver bullet’ refired”, in Brooks, F.P.
The Mythical Man-Month: Essays on Software
Engineering (pp. 207-226), Addison-Wesley, Reading,
MA, 1995.

[4] Curtis, B. “Cognitive issues in reusing software artifacts”,
in Biggerstaff, T.J. and Perlis, A.J. (eds.) Software
Reusability: Applications and Experience (pp. 269-288),
ACM Press, New York, 1989.

[5] Grinter, R.E. “Recomposition: Putting it all back together
again”, Proceedings of the ACM CSCW’98 Conference
on Computer Supported Cooperative Work (pp. 393-402),
ACM Press, New York, 1998.

[6] Grudin, J. “The case against user interface consistency”,
Communications of the ACM (vol. 32, no. 10), 1989, pp.
1164-1173.

[7] Hertzum, M. “People as carriers of experience and
sources of commitment: Information seeking in a
software design project”, to appear in The New Review of
Information Behaviour Research: Studies of Information
Seeking in Context. Proceedings of ISIC 2000 (Göteborg,
Sweden, August 16-18, 2000).

[8] IDC. Managing component-based development: SELECT
software tools, International Data Corporation,
Framingham, MA, 1998. Available at:
http://www.selectst.com/downloads/IDC/IDC.asp
(consulted March 29, 2000).

[9] Leith, P. “Fundamental errors in legal logic
programming”, The Computer Journal (vol. 29, no. 6),
1986, pp. 545-552.

[10] McClure, C. “Experiences in organizing for software
reuse”, Extended Intelligence, Chicago, IL, 1995.
Available at: http://www.reusability.com/papers3.html
(consulted October 10, 1999).

[11] Norman, D.A. “Cognitive engineering”, in Norman, D.A.
and Draper, S.W. (eds.) User Centered System Design:
New Perspectives on Human-Computer Interaction (pp.
31-61), Lawrence Erlbaum, Hillsdale, NJ, 1986.

[12] Ockerman, J.J. and Mitchell, C.M. “Case-based design
browser to support software reuse: Theoretical structure
and empirical evaluation”, International Journal of
Human-Computer Studies (vol. 51), 1999, pp. 865-893.

[13] Parnas, D.L.; Clements, P.C. and Weiss, D.M.
“Enhancing reusability with information hiding”, in
Biggerstaff, T.J. and Perlis, A.J. (eds.) Software
Reusability: Concepts and Models (pp. 141-157), ACM
Press, New York, 1989.

[14] Sprott, D. “Componentizing the enterprise application
packages”, Communications of the ACM (vol. 43, no. 4),
2000, pp. 63-69.

