
Published in: J. Gulliksen, M.B. Harning, P. Palanque, G.C. van der Veer, and J. Wesson
(Eds.), Proceedings of the IFIP EIS 2007 Conference on Engineering Interactive Systems.
LNCS 4940, pp. 483-500. Springer, Berlin, 2008. Preprint version.

On the Process of Software Design: Sources of
Complexity and Reasons for Muddling Through

Morten Hertzum

Computer Science, Roskilde University

Roskilde, Denmark
mhz@ruc.dk

Abstract. Software design is a complex undertaking. This study delineates and
analyses three major constituents of this complexity: the formative element
entailed in articulating and reaching closure on a design, the progress
imperative entailed in making estimates and tracking status, and the
collaboration challenge entailed in learning within and across projects.
Empirical data from two small to medium-size projects illustrate how practicing
software designers struggle with the complexity induced by these constituents
and suggest implications for user-centred design. These implications concern
collaborative grounding, long-loop learning, and the need for a more managed
design process while acknowledging that methods are not an alternative to the
project knowledge created, negotiated, and refined by designers. Specifically,
insufficient collaborative grounding will cause project knowledge to gradually
disintegrate, but the activities required to avoid this may be costly in terms of
scarce resources such as the time of key designers.

Keywords: User-centred design, Design process, Software development,
Software-project complexity, Muddling through, Collaborative grounding.

1 Introduction

Software design is replete with projects that are cancelled, late, over budget, or result
in systems with fewer features than originally specified [e.g., 5, 20]. Further, large
numbers of systems are rejected by users or produce a merely marginal gain over
former systems and work practices [e.g., 14, 28]. As an example, a recent national
system for the Danish public administration was more than 100% late, more than 50%
over budget, and reduced employee productivity by about 50% for several months
after it was released. Six months after release an expert assessment concluded that
considerable revisions of the system were immediately necessary, increasing the
overspending to almost 100% compared to the original budget [12]. Troubled projects
come about in spite of concerted efforts to the contrary, and they demonstrate the
complexity of software design. Managing this complexity requires that its core
constituents are well-understood.

This study analyses three constituents of software design and illustrates the
analysis with empirical data from two projects. Each of the constituents is indicative

of considerable complexity and – unless managed – entails serious risk to successful
project completion. The analysed constituents of software design are:
• The formative element, which concerns articulating and reaching closure on a

design
• The progress imperative, which concerns making estimates and tracking status
• The collaboration challenge, which concerns learning within and across projects

The formative element is at the core of human-computer interaction (HCI) and the
two other constituents are crucial characteristics of the context in which practical HCI
work takes place. Whereas the progress imperative has been acknowledged in much
HCI work, for example the work on discount usability engineering [31], the
implications of the collaboration challenge have not received nearly the same
attention. This study aims to outline implications for user-centred design resulting
from an analysis of the three constituents. For HCI researchers, the study intends to
point out issues that may seem mundane but nevertheless hamper real-world projects,
at least small to medium-size projects. For HCI practitioners, the study identifies
some of the problems and tradeoffs they face in their work, and thereby offers an
opportunity for reflection and pointers to means of alleviating some of the problems.

2 Empirical Data

To illustrate how practicing software designers approach the three software-design
constituents that are analysed in this paper empirical data were collected from two
software projects. The two projects are small to medium-sized and in this sense
represent the majority of software projects [8, 17]. Neither of the organizations in
which the projects took place follows a mandated design method but they have
successfully completed a range of software projects.

The first project concerns a browser interface to a document-management system.
Over a period of two decades the organization has developed, marketed, and
continuously evolved a generic document-management system. The organization has
120 employees and a base of more than a hundred longstanding customers. Thousands
of people use the document-management system on a daily basis. One high-level goal
of this system is to provide professionals, as opposed to secretaries and document
clerks, with easy access to organizational documents. In support of this goal it was
decided to develop a browser interface to the system. The browser-interface project
involved three designers and was successfully completed in seven months. The
project was completed on time and within budget but this was partly achieved by
reassessing and reducing the functionality of the browser interface halfway through
the project.

The second project concerns a common user-interface platform developed by an
organization that started by providing consultancy in hydraulic engineering but now
increasingly develops and sells software instead of or along with the consultancy. The
organization has 270 employees and has undertaken projects in more than a hundred
countries. Over a period of three decades the organization has developed a number of
hydraulic models and modelling tools as standalone software applications, but these
applications generally have crude and inconsistent user interfaces and they must be

ported individually to new operating systems. To mitigate these drawbacks a project
was established to provide a common user interface for the applications and handle
their interaction with the operating system. The project, which involved 10-15
persons, took longer than planned and consumed more resources, but it was
eventually completed.

For both projects two designers – the project manager and a programmer – were
interviewed for a total of three hours. The obtained data are retrospective, though both
projects were completed recently. In this sense the empirical studies are like post-
project reviews. The interviews, which were audio recorded and subsequently
transcribed, were loosely structured by a set of guiding questions. These questions
concerned the major difficulties and information needs experienced during the project
and the means in place to handle these information needs and communicate lessons
learned. The interviewees’ statements were compared and contrasted for purposes of
validation. All interviewees were for the most part positive about their project but
they also raised critical issues. Toward the end of the interviews, the interviewees
were asked about their views on what had been the most significant risk factors in
their project. This part of the interviews was based on a walkthrough of the 11-item
list of top software-project risks identified by Schmidt et al. [36].

3 Three Constituents of Software Design

The project knowledge created, utilized, modified, embodied, shared, sought, and
otherwise relied upon by designers must enable them to manage three complex and
interrelated constituents of software design: the formative element, the progress
imperative, and the collaboration challenge. Mapping these three constituents of
software design to the lists of top software-project risks identified by Boehm [4] and
Schmidt et al. [36] shows that the three constituents encompass the bulk of
complexity that must be managed in software projects (Table 1). Of the 21 top risks
on either of the two lists ten concern the formative element, five the progress
imperative, and three the collaboration challenge. Only three risks, about limitations
of technology, are not covered by the three constituents.

3.1 The Formative Element

The formative element is about articulating and reaching closure on a coherent design.
After discussing this constituent of software design it is illustrated with data from the
two empirical studies.

Articulating and Reaching Closure on a Design. The need for new systems can
manifest itself in manifold ways, such as dissatisfaction with present ways of
working, demands for new outputs, and knowledge of new technological options.
This initial need provides only a vague or high-level specification of what is required
from a new system and, consequently, software design involves a process of
articulating the requirements toward the system in detail. The task-artefact cycle (Fig.

Table 1. The coverage of the three constituents of software design in terms of the
top software-project risks identified by Boehm [4] and Schmidt et al. [36].

Constituent Boehm’s top-10 [4] Schmidt et al.’s top-11 [36]
The formative
element:
articulating and
reaching closure
on a design

 Continuing stream of
requirements changes

 Changing scope/objectives
 Misunderstanding the
requirements Developing the wrong

functions and properties Lack of frozen requirements
 Developing the wrong user
interface

 Lack of adequate user
involvement
 Failure to gain user commitment
 Failure to manage end-user
expectations
 Conflicts between user
departments

The progress
imperative:
making estimates
and tracking
status

 Unrealistic schedules and
budgets
 Gold-plating
 Shortfalls in externally
furnished components
 Shortfalls in externally
performed tasks

1 [9]) illustrates this cyclic and nontrivial process, in which designers respond to user
requirements by building artefacts, which in turn present or deny possibilities to users.
Users’ understanding of their current artefacts is shaped by the tasks for which they
are using the artefacts and, at the same time, their understanding of their tasks is
shaped by the artefacts they currently use. Likewise, designers’ understanding of the
technological options is shaped by their knowledge of tasks that need to be performed
and, at the same time, their understanding of users’ tasks is shaped by the possibilities
and restrictions of the artefacts they currently know of. Thus, people’s familiarity
with certain artefacts and certain tasks shape their understanding of what their tasks
are and what technology has to offer, and this understanding, in turn, constitutes a
perspective that points to certain technological options and makes people blind toward
others [30]. This makes it inherently difficult for people to transcend their current way
of perceiving things and envision how tasks, users, and technology should interact in
constituting the future use situation.

 Lack of top-management
commitment to the project

The collaboration
challenge: learn-
ing within and
across projects

 Personnel shortfalls Insufficient/inappropriate
staffing
 Lack of required knowledge/
skills in the project personnel

Other: limitations
of technology

 Real-time performance
shortfalls
 Straining computer-science
capabilities

 Introduction of new technology

The information needs inherent in the task-artefact cycle concern three areas of
knowledge [27]: the users’ present work, the technological options, and the new
system. In a sense, the users’ present work and the technological options are only of
interest because designers have no direct way of getting information about the new
system and use situation. This is interesting from a project-knowledge point of view
because it points out the massive indirectness of the information-seeking process in
software design. Designers seek information about the users’ present work, as
opposed to their future work, and the technological options, as opposed to the future
system, because they have no direct way of getting the information they really need.
When designers are asked to design a new system they are, at the same time,
prevented from getting crucial information about what properties this new system
should have because people’s familiarity with their present tasks and artefacts blocks
their ability to envision radically new solutions. Further, software projects are
frequently hampered by fluctuating and conflicting requirements because the learning
process inherent in the task-artefact cycle continues throughout the projects and
because the needs of different stakeholders may point toward different designs [4, 10,
36]. Apart from untangling these issues, which add to the difficulties of reaching
convergence on a common project vision, requirements must not only be articulated
they also need advocates. These advocates can be designers, users, or other people
involved in a project. Eodice et al. [16] divided the requirements in a project they
studied into those with and those without an advocate. They report that whereas
virtually all the requirements with an advocate were eventually implemented not a
single one of the requirements without an advocate were implemented.

Potts and Catledge [34] find that the process of reaching closure on the design of a
new system is painfully slow and punctuated by several reorientations of direction.
Lack of an agreed-upon understanding of what a system is to achieve complicates the
development process because it leads to disagreements among designers as to the
focus of the system and the best utilization of their resources. As a result, users may
not be provided with any good system image [32] that presents the system facilities
and their interrelationships in a clear and coherent manner. To provide insight about
the use situation and thereby obtain a good match between user needs and system
image prospective users must be actively involved in articulating and reaching closure
on a design [e.g., 3, 18, 19]. At the same time requirements articulation is also a
negotiation process in which designers need some level of control over the scope of
projects to be able to balance their management of the contractual aspect of

Fig. 1. Task-artefact cycle.

Task

Artefact

RequirementsPossibilities

requirements specification against the facilitation of users in an open-ended search for
requirements [23].

 interface might,
therefore, give rise to many new requirements and change requests.

Browser-Interface Project. Two of the three designers involved in the browser-
interface project had considerable knowledge of the users’ work domain from
previous projects and could, thus, readily enter into discussions of requirements. The
initial forum for these discussions was an annual two-day customer seminar hosted by
the development organization to get feedback on released systems and discuss needs
and ideas for new system facilities. For one of these seminars, which are attended by
about 300 persons, a free-lance consultant made a prototype of a browser interface.
Based on the feedback and discussions at the seminar it was decided to make the
browser interface a top-priority project. This project was to provide platform-
independent access to the document-management system without the need for
installing additional software on users’ computers. Further, the browser interface
should be sufficiently undemanding to be usable without formal training, in contrast
to the primary interface which requires a two-day course. While these high-level goals
were clear from the outset a more detailed requirements document was never
produced. Rather, the designers started coding early on and kept the evolving design
partly in their heads and partly reflected in the code they produced. The intermediate
outcomes of their work, in the form of system prototypes, were presented to and
discussed with a group of user representatives with whom the designers met 4-5 times
during the project. This led to the identification of a series of more detailed
requirements, but the primary interface of the document-management system
provided a default structure that significantly reduced the uncertainty and complexity
involved in specifying the browser interface. The presence of the primary interface
may, however, have rendered the designers and user representatives blind toward new
possibilities and solutions. In continuation of this, one of the interviewees was
concerned that the user representatives did not experience the prototypes in sufficient
depth at the meetings and that actual use of the released browser

Common-Platform Project. At the overall level the common-platform project had a
clear product vision from the very start, namely to provide a common, state-of-the-art
graphical user interface for the individual hydraulic-engineering applications.
Initially, the key person on the project was knowledgeable about both the hydraulic
engineering that forms the basis for the applications and the user-interface
programming that forms the basis for the common platform. This person has,
however, left the organization and the remaining people on the project knew little
about hydraulic engineering. Though the project members continually interacted with
colleagues knowledgeable about hydraulic engineering this interaction was largely
informal and the outcomes of these interactions remained in the heads of individual
project members. No requirements specification was produced, discussed, iterated,
and agreed upon, and apart from some code-level documentation the only up-to-date
design documentation has been the project members’ personal notes. The absence of
systematic user involvement and requirements analysis provides strong candidate
reasons for two of the three software-project risks identified by the interviewees as

particularly relevant in relation to this project: failure to gain user commitment and
failure to manage end-user expectations. The absence of design documentation such
as an agreed-upon requirements specification also entailed that the project members
were not supported in maintaining a shared understanding of the scope and objectives
of the project. As a consequence there was no authoritative source in discussions
about the functionality expected from different software modules and the project
members repeatedly experienced difficulties in determining whether and when a
module was complete.

 projects the main reasons for using proven design practices only sparingly

•

nvolve prospective users in producing a more detailed

•

quirements that went substantially beyond what they

•

progress though they were aware

through the activities involved in articulating and
reaching closure on a design.

3.2 The Progress Imperative

ent of software design it is illustrated with data from the two
empirical studies.

Reasons for Observed Practices. Recommendations about how to articulate and
reach closure on a design include principles such as “early focus on users and tasks”
[18], techniques such as interpretation sessions [3], and artefacts such as requirements
specifications. While such recommendations have been advocated for decades they
are often not followed in practice [18, 34]. In the browser-interface and common-
platform
were:

Believing high-level project goals are sufficient. High-level goals like “providing
platform-independent access to the document-management system” may provide a
product vision but without complementary details the design is severely
underspecified. Nevertheless, the designers in the two studied projects seemed to
consider the high-level goals a satisfactory specification of their work in that they
made no concerted effort to i
requirements specification.
Not knowing how to bring about more detailed requirements. The designers
seemed very uncertain about how to get detailed requirements information from
users and whether users would be able to provide such information. In the browser-
interface project this uncertainty also included a fear of losing control over the
process; that is, of eliciting re
had the resources to deliver.
Focusing on the tasks they know best. In a situation characterized by uncertainty
and schedule pressure the designers concentrated on the tasks they knew how to
do, primarily coding. This gave rise to a sense of
that important activities were being glossed over.
These reasons suggest that if given a structured process of clearly defined tasks for

working systematically with requirements, designers will tend to follow this process
[25]. But until such a process has become an established part of their repertoire many
designers will likely muddle

The progress imperative is about making estimates and tracking project status. After
discussing this constitu

Making Estimates and Tracking Status. DeMarco [13] states that without estimates
software projects cannot be managed. Estimation is a prerequisite for project planning
which, in turn, provides for the coordination and management of design activities.
Accurate estimates are, however, hard to make because the cost and time of
developing both software modules and complete systems depend on multiple,
interacting factors. Considerable experience is required to recognize the factors that
warrant particular attention in a specified situation. Additional complicating factors
include that individual differences in the productivity of experienced designers may
be as large as 25:1 [15] and that requirement changes may necessitate rework.
Inaccurate estimates of development cost and time impede the coordination of
activities and allocation of resources both within and across projects. This may,
ultimately, lead to badly informed decisions about whether to continue or cancel
projects. Consequently, the task of managing software projects involves that estimates
are regularly checked against actual progress (Fig. 2). Estimates enforce plans by
stipulating the amount of time and other resources allocated to a specified activity and
must, at the same time, preserve realism by allocating enough time and resources to
complete the activity. Conversely, status information enforces realism by accounting
for how far the project has actually progressed and presupposes plans by assuming a
shared understanding of what the outcome of specified activities should be.

Project-completion rates are low in software design [20, 36], and designers may
thus be tempted to make optimistic estimates to avoid project cancellation, or they
will simply direct their early efforts toward producing quick progress rather than
spend their time on the planning that is necessary to make accurate estimates.
DeMarco [13] finds that among software engineers an estimate is generally thought of
as “the most optimistic prediction that has a non-zero probability of coming true”.
This leads to frequent underestimation. With appropriate training designers become
better at estimating their work and the tendency to underestimate time and size is
reduced, resulting in a more evenly balanced number of overestimates and
underestimates [21]. These improvements are, however, inconsequential unless used,
and it appears that estimates are often supplanted by performance goals, which are
used to create incentives, or deadlines dictated by market pressures or other
considerations external to the design effort. This implies that a consistent move
toward more accurate estimates may require profound changes at the organizational
and project levels in addition to an improvement in individual designers’ ability to
estimate their work [26].

Fig. 2. Plan-activity cycle.

Plan

Activities

Estimates Status

Whenever a module is added or revised, ripple effects or previously undetected
defects may emerge in other modules. Such changes to the status of modules are hard
to predict and quantify ahead of time. In the absence of good estimation skills
individual estimates may be made by increasing base estimates by a fixed percentage
determined on the basis of accumulated experience. This is the approach taken by for
example Microsoft, which adds 20-50% buffer time to base estimates [11]. Averaged
over a number of activities such coarse-grained approaches may work well, but for
individual activities designers will, at least occasionally, experience deviations that
leave them idle for a period or block further progress on other activities.
Organizations seem to work around these periods of waiting by assigning their
designers to more than one project [33]. This, however, introduces additional
dependencies that further complicate the plan-activity cycle (Fig. 2).

idered relevant as in getting a specific piece of
new functionality at a specific date.

Browser-Interface Project. The major means of managing the browser-interface
project was two milestones. First, a working prototype should be ready for a meeting
with the user representatives halfway through the project. Second, the system should
be released at a fixed date. No tools or other formal means were in place to keep track
of project status and support the designers in judging whether the project was on
schedule. Rather, the designers relied on their personal sense of their progress and on
extensive informal communication. Even formal meetings were few because the three
designers were located close to each other – for part of the project they were in the
same office. The designers’ loose grip on status tracking was particularly evident in
relation to testing. No established procedures for testing were in place and it
remained, for example, largely untested whether system response times were
acceptable and how platform-dependent they were. Similarly, the designers had no
tools for managing their collaborative access to the source code, and there were
incidents where they accidentally overwrote each other’s files and thereby lost
revisions. In the gradual process of setting the functionality of the browser interface
the designers made explicit use of a multi-release strategy. That is, the top priority
was to meet the project deadline whereas the functionality of the browser interface
was considered malleable. This multi-release strategy exploited that the
organization’s document-management system already had an established position on
the market and a base of customers that were as interested in being assured that the
system grew in directions they cons

Common-Platform Project. In the common-platform project progress toward
satisfaction of requirements was not tracked systematically. Confidence in estimates
gradually deteriorated and absence of shared agreement about the precise
functionality of modules further eroded the basis for assessing module status.
Contrary to this, an automatic mechanism was in place to track status at the code level
and make updated versions of the code available to the designers. In total, the
modules of the common-platform project comprise more than a million lines of code.
The size of the code and the number of designers involved created a need for
regularly establishing the code-level status of the modules and checking cross-module
compatibility. This was achieved by a nightly build; that is, every night the latest

version of each module was automatically compiled and linked with all the other
modules. Whenever the nightly build succeeded the designers had a running version
of their system. If a module contained errors that prevented its compilation or linking,
it was automatically added to an intranet page listing the modules that failed the build,
and an auto-generated email was sent to the designer responsible for the module.
Thus, when the designers arrived at work in the morning they had access to a version
of the code that included all designers’ work up until yesterday evening and they had
a complete list of the modules that failed the build. The nightly builds promoted a
work practice in which people made an effort to check the correctness of their module
before they went home. Further, some tests were run automatically every night with
standard data sets and checks of system output against reference data. Finally, in-code
comments were extracted from the code during the nightly build and a set of intranet
pages generated. These web pages contained documentation of individual functions
but rarely covered interactions among functions or issues above the function level.
Thus, while this documentation was regenerated every day it was insufficient as a
means of making sense of the code. However, little design documentation exists apart
from these web pages. The main reason for this is that the project group was under an
unrelenting pressure to produce progress, and to be perceived as productive a designer
had to be writing source code, not documentation. For similar reasons the status
information resulting from the nightly builds was not accompanied by careful
estimation and reestimation of activities.

minent reasons for the

•

pragmatic basis for ‘estimating’ the functionality they

•

 estimates. Eventually, they largely abandoned estimation but kept

•

re of delays and thereby a
risk of being perceived as a less competent professional.

Reasons for Observed Practices. Reluctance or failure to make estimates and track
status is widespread in software design. Common reasons for this are schedule
pressure, fluid requirements, and limited experience with estimation [e.g., 4, 13, 25].
In the browser-interface and common-platform projects pro
absence of systematic estimation and status assessment were:

Accurate estimates presuppose detailed requirements. In the absence of clear
requirements it is futile to attempt to estimate the time and resources required to
complete a system or module. Rather, the designers in the browser-interface
project reversed the process and used deadlines, which were stated more clearly
than requirements, as a
would be able to deliver.
Not knowing how to handle estimates that are not met. The designers in the
common-platform project gradually lost confidence in estimation when they
realized that they repeatedly failed to meet their estimates. Merely replacing old
estimates with new made the whole effort seem pointless to them. Uncertainty and
disagreements about the precise functionality of the modules further reduced their
confidence in the
tracking status.
Estimates are confronting for the individual designer. Estimates create
transparency with respect to whether the individual designer delivers on time or
introduce delays that may have ripple effects on his or her colleagues’ work. Thus,
while estimates are central to the management of collaborative work, an immediate
consequence for individual designers is increased exposu

The nightly builds in the common-platform project illustrate that keeping track of
project status at the code level and at the requirements level are distinct issues.
Abstaining from working systematically with requirements means that decisions
about requirements are made by individual designers and may subsequently be
contested by other designers and by users. This provides a fragile basis for making
progress and assessing project status.

3.3 The Collaboration Challenge

The collaboration challenge is about learning within and across projects. After
discussing this constituent of software design it is illustrated with data from the two
empirical studies.

Learning within and across Projects. In general, no single designer possesses all the
required project knowledge in the necessary detail. Thus, to accommodate the
customers’ needs as well as needs arising from stakeholders such as marketing,
service, maintenance, and quality control, software design becomes a collaborative
effort. Another reason for developing software collaboratively is that many activities
can then proceed in parallel and thereby both reduce the time from a decision is made
to its consequences become apparent and shorten total development time. However,
the distribution of software design onto multiple individuals creates a need for
communication and coordination, which increases drastically with the size of the
collaborating group [5]. Communication and coordination take place both within and
across projects, corresponding to a short and a long learning loop (Fig. 3).

The project knowledge held by a group of designers is constantly evolving and in
this sense learning is an integral part of their work practice [6]. This learning-in-
working is local, aimed at competent performance, and woven into a collaborative
practice. First, it is local in that it consists of gaining a coherent understanding of
issues pertaining to the project at hand. These project issues are rich in contextual
detail specific to the concrete situation, and these specific details are of paramount
importance to the successful completion of projects. Second, it is aimed at competent
performance because the ability to produce useful and usable systems in a well-
managed way is much more salient to designers than production of generalized,

Fig. 3. Short and long learning loops.

Short loop Project
initiation

Long
loop

Organization

Project

explicit knowledge. According to Allen [1] this is the distinctive difference between
engineering work and the work of scientists. Third, it is woven into a collaborative
practice in that the different experiences and competencies contributed by different
project participants provide learning opportunities beyond those available to people
working individually. These learning opportunities enable designers to replace project
activities involving prohibitive amounts of individual experimentation with close
collaboration among people with relevant prior experiences.

Within projects written communication can be minimal if the designers meet often.
Design methods often prescribe that a number of design artefacts are produced and
kept up to date, but actual use of the methods tends to be more opportunistic [2, 22].
Design artefacts tend to be used at selected points in projects when designers perceive
that the artefacts may have a direct impact on the progress of their project. During the
in-between periods where the design artefacts are not contributing directly to the
designers’ current activities the refinement and maintenance of the artefacts is likely
to be postponed or downgraded in favour of activities that yield more immediate
gains. Instead, designers carry most project information in their heads [34, 38]. This
increases the reliance on oral communication and the centrality of the few people on a
project who are able to reason and argue about how local changes affect the overall
design. Over the course of a project these key people extend and refine their
knowledge of the project by repeatedly debating alternatives, resolving
disagreements, and incorporating redirections. Sharing this knowledge within the
project group is an important but time-consuming process [3], and other project
activities are likely to be competing for the key people’s time, including activities that
may appear more important because they break new ground and thereby yield
pertinent project progress.

Across projects the experiences gained and solutions devised by designers may
remain untapped by their colleagues because they are unaware of them or uncertain
about their applicability outside their original context. The long loop represents this
crucial but often unmanaged flow of experiences, solutions, and other knowledge
from individual projects back to the organization for reuse in other projects. Zedtwitz
[37] reports that 80% of projects are not reviewed after completion or cancellation to
systematically and regularly make acquired project knowledge available for
organizational learning. Further, in the design documentation made during projects
designers are likely to make extensive use of condensed writing, which leaves most of
the context unsaid because the documentation will be understood by its primary
readers – usually other project members – as belonging to a certain ongoing activity.
To make documents understandable to people who are not familiar with the context
the condensed forms of writing must be elaborated, often to the exasperation of the
primary readers who can see the elaboration as redundant [7]. Also, the pressure to
produce project progress often precludes that designers spend time expanding their
writings into documents understandable to unknown future readers [20]. Instead, most
of the information that flows from project to project is carried by people, and oral
communication and project staffing become key elements in the cross-project
management of knowledge. This has spurred increasing interest in systems directed at
locating knowledgeable colleagues – people-finding systems [e.g., 29].

Browser-Interface Project. The initial browser-interface prototype, and the analysis
leading up to it, was made by a free-lance consultant who was not otherwise involved
in the project. Thereby the three designers on the project missed the opportunity to
learn from the consultant’s experiences, apart from what they could deduce from the
prototype. Instead, the three designers started largely afresh and relied on oral
communication in keeping each other informed about their work. Written design
documentation was sparse and played a negligible role. One of the interviewees
estimated that a total of 20-25 pages of documentation were produced, all at the very
end of the project. Apart from the small size of the project the interviewees
emphasized three core success factors, all of which concerning the distribution of and
easy access to project-relevant knowledge. First, the physical proximity of the three
designers made it quick and easy to ask for help, and supported them in maintaining a
mutual awareness of each other’s current activities. Second, the three of them were
responsible for the entire project. The absence of third parties enabled a way of
working in which a shared understanding of the evolving design was constructed and
maintained orally through numerous conversations in their shared office. Third, the
project was assigned one of the organization’s most competent designers. The
interviewed project manager stressed the importance of the few especially competent
people and had made it a precondition for accepting to become the project manager
that one of these core people was assigned to the project. Along with informal
communication, staffing appeared to be the major way in which experience was
transferred from project to project. In most cases staffing also determined the
possibilities for reuse of software components because sparse documentation limited
reuse to components the individual designers had themselves been involved in
developing. The only occasion on which the browser-interface project has been
evaluated and the lessons learned from it discussed was at an informal, project-
internal meeting shortly after the project deadline.

Common-Platform Project. In the common-platform project the interviewees
expressed a need for better ways of managing how far they had progressed toward
completion. On the one hand, the project manager was not sufficiently good at
defining and enforcing project milestones. On the other hand, the designers were not
sufficiently good at communicating the actual status of their modules – many modules
were “almost completed” for extended periods of time. The interviewees found that
this boiled down to (1) frequent opacity or disagreements as to the functionality
required from a module for it to be complete and (2) inadequate estimation skills. The
first issue is a combination of communication breakdowns and imprecision in the
analysis that turned overall project goals into specific requirements. This analysis was
largely left to the individual designer, and no artefacts or stipulated procedures were
in place to support the designers in communicating, arguing about, and reaching
closure on the outcome of these analyses. A core element of the second issue is that
writing source code was perceived as the primary activity whereas the time required
for activities such as testing and documenting the code was generally underestimated.
For the people appointed to system testing this activity was a secondary activity and
their primary task consumed the majority of their time. Thus, testing was patchy and
errors were encountered and corrected in a piecemeal fashion. The project did not
include a post-project evaluation, and the organization has no cross-project forum for

communicating lessons learned in one project to the rest of the organization. That is,
the experiences gained in the project have not been the subject of collaborative
discussion, apart from informal exchanges among designers. Thus, as an example, the
nightly build and its associated mechanisms for supporting the development work
were invented and instituted within the common-platform project by a single person,
who has subsequently left the organization.

Reasons for Observed Practices. Projects are ubiquitous in software design,
indicating that organized collaboration is biased toward the short loop whereas
collaboration across projects tends to be informal [35, 37]. This is clearly illustrated
by the browser-interface and common-platform projects. Apart from general cognitive
and motivational factors [e.g., 24] reasons for having few artefacts and forums in
place in support of the long loop include:
• Short-term costs overshadow long-term gains. Extra work is required to make

project knowledge available to colleagues on other projects, and the reuse benefits
of such work are hard to assess and more distant than the immediate tasks
competing for designers’ time and attention. In small projects the extra work may
be prohibitive and in highly dynamic settings reuse may seldom happen. However,
the members of the browser-interface and common-platform projects felt that they
ought to invest more in the long loop.

• Project knowledge is context sensitive. Designers interact repeatedly with their
colleagues to get information, trusted opinion, and impetus for creative discourse.
In these interactions, colleagues are not simply sources of information but actively
involved in interpreting the applicability of their knowledge to the concrete
situation. Conversely, designers are reluctant to engage in project post mortems
and other activities that evolve around the context in which knowledge was gained
because they are uncertain whether it will be applicable to future projects.

• Not knowing how to make the long loop more effective. A need for process support
has been noted in relation to the two other constituents of software design but it is
even more apparent in relation to the long loop. With the exception of
documentation, the designers on the browser-interface and common-platform
projects lacked knowledge of and experience with means of collaboratively
managing the flow of knowledge across projects.
The collaboration challenge – especially the long loop – is the constituent of which

the designers on the browser-interface and common-platform projects were least
aware. At the same time, methods for managing the long loop appear to be less
developed than for the short loop [24], though activities such as learning are crucially
important to successful completion of software projects.

4 Implications for User-Centred Design

Based on the analysis of the three constituents of software-project complexity, this
section aims to identify and discuss selected challenges to organizations’ successful
use and continued elaboration of practices for user-centred design.

4.1 Collaborative Grounding

In both empirical studies many of the troubles experienced by the designers concern
collaborative grounding; that is, the active construction by actors of a shared
understanding that assimilates and reflects available information. Project activities are
rarely performed by the entire group of designers but typically by varying subgroups
of the involved designers. Deliberate efforts of collaborative grounding are required
to extend the knowledge acquired by a subgroup to the remaining designers on a
project. The designers in the two empirical projects often under-recognized this need
for collaborative grounding. Collaborative grounding is central to contextual design
[3] and some participatory-design techniques [e.g., 19] but most techniques for user-
centred design are biased toward information-seeking activities to the extent of
largely bypassing collaborative grounding. For example, most usability evaluation
methods focus on problem identification and largely evade the subsequent grounding
of the evaluation results in the entire project group. This amounts to assuming that a
project group is one unitary actor, rather than a network of actors that need to actively
construct a shared understanding. The two studied projects vividly illustrate that the
designers struggled with collaborative grounding in relation to all three constituents of
software design. Examples include that a shared understanding of module
functionality was a long time in the making, that estimates were consequently
inaccurate and difficult to interpret, and that no forums for long-loop learning were in
place to prevent these issues from recurring in the next project.

4.2 Long-Loop Learning

Small project groups with around five members are widespread in software design,
and many organizations actively opt for small project groups, for example by dividing
development tasks onto multiple projects [8]. The browser-interface project is a case
in point. In such small groups the communication and collaborative grounding
necessary to cope with the short loop is manageable. Conversely, the common-
platform project was staffed with 10-15 people, and this alone made it much more
demanding to cope with the short loop. However, the size of a project group is also a
means to shift the balance between the short loop and the long loop. A small project
group needs frequent communication with project-external sources to exploit lessons
learned in other projects. A larger project group will have access to more of these
lessons by means of communication among project members and the long loop will,
thereby, be partly subsumed in the short loop. Apart from project staffing, the
organizations in both empirical studies relied on informal exchanges among designers
as the principal means of exploiting experience from one project in other projects.
Given the frequent recommendations of small projects [8, 11] and the ensuing
reliance on an effective long loop it is noteworthy that methods for user-centred
design focus almost exclusively on individual projects. Thus, methods as well as
practitioners appear to devote most of their attention to the short loop and in so doing
they render the long loop comparatively invisible. In both empirical projects the
designers seemed to devote little time and attention to collaborative activities directed
at improving their practices from one project to the next. Concrete guidance is needed

on how to work effectively with the long loop in relation to user-centred design.
Activities involving a more systematic pull of information, practices, and other
resources into projects are probably more likely to become successful than activities
aimed at pushing information and so forth from ongoing toward future projects.

4.3 Intimidation Barriers and Project Knowledge

The small to medium size of the projects and organizations in the two empirical
studies could be an important factor in understanding their practices. The size may
create an intimidation barrier toward software-process and long-loop initiatives that
introduce (1) a new mindset promoting the longer-term effects of present practices
rather than their more visible, immediate effects, (2) more systematic and regulated
work processes, and (3) methods that are generally associated with large projects and
organizations. The two empirical studies point toward a need for lightweight
techniques and practices for managing the complexities inherent in the three
constituents of software design. Discount usability engineering [31] suggests that
unintimidating starting points and modest steps may be important to the adoption of
such techniques and practices. However, practitioners also need to realize that as the
systems they engage in designing grow increasingly complex so does their need for
techniques and practices that can match this complexity. A more managed process
appears necessary. For user-centred design this seems to point toward further work on
reaching closure on a design, integrating the task-artefact and plan-activity cycles, and
communicating experiences across projects. Improved practices and a more managed
process should, however, not be achieved by starting to consider methods an
alternative to the project knowledge created by designers in response to the
particularities of their current project.

5 Conclusion

Software design is a complex undertaking as evidenced by the frequency with which
projects are cancelled, late, over budget, or resulting in marginal gains and systems
disliked by users. Three major constituents of software-project complexity have been
analysed in this study: the formative element, the progress imperative, and the
collaboration challenge. Empirical data from two small to medium-size projects
illustrate that practitioners struggle to manage these constituents. While each of the
empirical studies is based on only two informants, the studies provide patent
illustrations of a gap between the state of affairs in these software projects and the
state of the art regarding software-process management. The designers in the two
studied projects had few techniques and other means in place to support their work.
Instead, they relied on an informal approach in which requirements, estimates, status
information, and other design information were largely kept in the designers’ heads
and exchanged with close-by colleagues on an ad-hoc basis. The exceptions to this
informal approach were carefully selected and mainly consisted of the nightly builds
in the larger of the two projects and the annual customer seminar hosted by the
organization in which the other project took place.

In many organizations, the principal means of coping with the long loop is project
staffing. This reflects that project knowledge often unfolds around a few people with
knowledge of relevant prior projects and the ability to take in the various pieces of
information involved in a design, make out how they hang together, and articulate this
clearly. A main challenge for user-centred design is to provide support for a more
managed design process while avoiding that methods become seen as an alternative to
project knowledge.

Acknowledgements. Johannes Knigge contributed to the empirical studies. Special
thanks are due to the interviewees who agreed to participate in this study in spite of
their busy schedules.

References

1. Allen, T.J.: Distinguishing engineers from scientists. In: Katz, R. (ed.): Managing
Professionals in Innovative Organizations: A Collection of Readings. Ballinger, Cambridge,
MA (1988) 3-18

2. Bansler, J.P., Bødker, K.: A reappraisal of structured analysis: design in an organizational
context. ACM Transactions on Information Systems 11, 2 (1993) 165-193

3. Beyer, H., Holtzblatt, K.: Contextual Design: Defining Customer-Centered Systems. Morgan
Kaufmann, San Francisco, CA (1998)

4. Boehm, B.W.: Software risk management: principles and practices. IEEE Software 8, 1
(1991) 32-41

5. Brooks, F.P.: The Mythical Man-Month: Essays on Software Engineering, Anniversary
Edition. Addison-Wesley, Reading, MA (1995)

6. Brown, J.S., Duguid, P.: Organizational learning and communities-of-practice: toward a
unified view of working, learning, and innovation. Organization Science 2, 1 (1991) 40-57

7. Brown, J.S., Duguid, P.: The social life of documents. First Monday 1, 1 (1996). Available
at: http:// firstmonday.org/issues/issue1/documents/index.html

8. Carmel, E., Bird, B.J.: Small is beautiful: a study of packaged software development teams.
Journal of High Technology Management Research 8, 1 (1997) 129-148

9. Carroll, J.M., Kellogg, W.A., Rosson, M.B.: The task-artifact cycle. In: Carroll, J.M. (ed.):
Designing Interaction: Psychology at the Human-Computer Interface. Cambridge
University Press, Cambridge (1991) 74-102

10. Curtis, B., Krasner, H., Iscoe, N.: A field study of the software design process for large
systems. Communications of the ACM 31, 11 (1988) 1268-1287

11. Cusumano, M.A., Selby, R.W.: How Microsoft builds software. Communications of the
ACM 40, 6 (1997) 53-61

12. Danish Board of Technology: Erfaringer fra statslige IT-projekter – hvordan gør man det
bedre? Report No. 10, Copenhagen, DK (2001)

13. DeMarco, T.: Controlling Software Projects: Management, Measurement and Estimation.
Yourdon Press, Englewood Cliffs, NJ (1982)

14. Eason, K.: Information Technology and Organisational Change. Taylor & Francis, London
(1988)

15. Egan, D.E.: Individual differences in human-computer interaction. In: Helander, M. (ed.):
Handbook of Human-Computer Interaction. Elsevier, Amsterdam (1988) 543-568

16. Eodice, M.T., Fruchter, R., Leifer, L.J.: Towards a theory of engineering requirements
definition. In: Lindemann, B., Meerkamm, V. (eds.): Proceedings of ICED 99, Vol. III.
Technische Universität München, Garching, DE (1999) 1541-1546

17. Fayad, M.E., Laitinen, M., Ward, R.P.: Software engineering in the small. Communications
of the ACM 43, 3 (2000) 115-118

18. Gould, J.D., Lewis, C.: Designing for usability: key principles and what designers think.
Communications of the ACM 28, 1 (1985) 300-311

19. Greenbaum, J., Kyng, M. (eds.): Design at Work: Cooperative Design of Computer Systems.
Erlbaum, Hillsdale, NJ (1991)

20. Grudin, J.: Evaluating opportunities for design capture. In: Moran, T.P., Carroll, J.M. (eds.):
Design Rationale: Concepts, Techniques, and Use. Erlbaum, Mahwah, NJ (1996) 453-470

21. Hayes, W., Over, J.W.: The Personal Software Process (PSP): An Empirical Study of the
Impact of PSP on Individual Engineers. Technical Report No. CMU/SEI-97-TR-001.
Carnegie Mellon University, Pittsburgh, PA (1997)

22. Hertzum, M.: Making use of scenarios: a field study of conceptual design. International
Journal of Human-Computer Studies 58, 2 (2003) 215-239

23. Hertzum, M.: Small-scale classification schemes: a field study of requirements engineering.
Computer Supported Cooperative Work 13, 1 (2004) 35-61

24. Hinds, P.J., Pfeffer, J.: Why organizations don’t “know what they know”: cognitive and
motivational factors affecting the transfer of expertise. In: Ackerman, M.S., Pipek, V., Wulf,
V. (eds.): Sharing Expertise: Beyond Knowledge Management. MIT Press, Cambridge, MA
(2003) 3-26

25. Humphrey, W.S.: Why don’t they practice what we preach? Annals of Software Engineering
6 (1998) 201-222

26. Humphrey, W.S.: Three process perspectives: organizations, teams, and people. Annals of
Software Engineering 14 (2002) 39-72

27. Kensing, F., Munk-Madsen, A.: PD: structure in the toolbox. Communications of the ACM
36, 6 (1993) 78-85

28. Landauer, T.K.: The Trouble with Computers: Usefulness, Usability and Productivity. MIT
Press, Cambridge, MA (1995)

29. Mockus, A., Herbsleb, J.D.: Expertise browser: a quantitative approach to identifying
expertise. In: Proceedings of ICSE ‘02. ACM Press, New York (2002) 503-512

30. Naur, P.: The place of programming in a world of problems, tools, and people. In: Kalenich,
W. (ed.): Proceedings of IFIP Congress 65. Spartan Books, Washington, DC (1965) 195-
199

31. Nielsen, J.: Usability Engineering. Academic Press, San Diego, CA (1993)
32. Norman, D.A.: Cognitive engineering. In: Norman, D.A., Draper, S.W. (eds.): User

Centered System Design: New Perspectives on Human-Computer Interaction. Erlbaum,
Hillsdale, NJ (1986) 31-61

33. Perry, D.E., Staudenmayer, N.A., Votta, L.G.: People, organizations, and process
improvement. IEEE Software 11, 4 (1994) 36-45

34. Potts, C., Catledge, L.: Collaborative conceptual design: a large software project case study.
Computer Supported Cooperative Work 5, 4 (1996) 415-445

35. Schindler, M., Eppler, M.J.: Harvesting project knowledge: a review of project learning
methods and success factors. International Journal of Project Management 21, 3 (2003)
219-228

36. Schmidt, R., Lyytinen, K., Keil, M., Cule, P.: Identifying software project risks: an
international Delphi study. Journal of Management Information Systems 17, 4 (2001) 5-36

37. von Zedtwitz, M.: Organizational learning through post-project reviews in R&D. R&D
Management 32, 3 (2002) 255-268

38. Walz, D.B., Elam, J.J., Curtis, B.: Inside a software design team: knowledge acquisition,
sharing, and integration. Communications of the ACM 36, 10 (1993) 63-77

